16 research outputs found

    The multiscenario lot size problem with concave costs

    Get PDF
    The dynamic single-facility single-item lot size problem is addressed. The finite planning horizon is divided into several time periods. Although the total demand is assumed to be a fixed value, the distribution of this demand among the different periods is unknown. Therefore, for each period the demand can be chosen from a discrete set of values. For this reason, all the combinations of the demand vector yield a set of different scenarios. Moreover, we assume that the production/reorder and holding cost vectors can vary from one scenario to another. For each scenario, we consider as the objective function the sum of the production/reorder and the holding costs. The problem consists of determining all the Pareto-optimal or non-dominated production plans with respect to all scenarios. We propose a solution method based on a multiobjective branch and bound approach. Depending on whether shortages are considered or not, different upper bound sets are provided. Computational results on several randomly generated problems are reported

    Policies for inventory/distribution systems: The effect of centralization vs. decentralization

    Get PDF
    This paper concerns with a multi-echelon inventory/distribution system considering one-warehouse and N-retailers. The retailers are replenished from the warehouse. We assume that the demand rate at each retailer is known. The problem consists of determining the optimal reorder policy which minimizes the overall cost, that is, the sum of the holding and replenishment costs. Shortages are not allowed and lead times are negligible. We study two situations: when the retailers make decisions independently and when the retailers are branches of the same firm. Solution methods to determine near-optimal policies in both cases are provided. Computational results on several randomly generated problems are reported

    An inventory model for multiple items assuming time-varying demands and limited storage

    Get PDF
    Producción CientíficaA model for inventory systems with multiple products is studied. Demands of items are time-dependent and follow power patterns. Shortages are allowed and fully back logged. For this inventory system, our findings provide the efficient inventory policy that helps decision-makers to obtain the initial inventory levels and the reorder points that maximize the profit per unit time. Moreover, when it is assumed that the warehouse used for the storage of products has a limited capacity, the optimal inventory policy is also developed. The model presented here extends some inventory systems studied by other authors. Numerical examples are introduced to illustrate the applicability of the theoretical results presented.Ministerio de Ciencia, Innovación y Universidades cofinanciado por la Comunidad Europea (FEDER) (project MTM2017-84150-P)Publicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCL

    Optimal price and lot size for an EOQ model with full backordering under power price and time dependent demand

    Get PDF
    Producción CientíficaIn this paper, we address an inventory system where the demand rate multiplicatively combines the effects of time and selling price. It is assumed that the demand rate is the product of two power functions, one depending on the selling price and the other on the time elapsed since the last inventory replenishment. Shortages are allowed and fully backlogged. The aim is to obtain the lot sizing, the inventory cycle and the unit selling price that maximize the profit per unit time. To achieve this, two efficient algorithms are proposed to obtain the optimal solution to the inventory problem for all possible parameter values of the system. We solve several numerical examples to illustrate the theoretical results and the solution methodology. We also develop a numerical sensitivity analysis of the optimal inventory policy and the maximum profit with respect to the parameters of the demand function.Ministerio de Ciencia, Innovación y Universidades y Fondo Europeo de Desarrollo Regional (FEDER) - (Project MTM2017-84150-P

    An inventory system with time-dependent demand and partial backordering under return on inventory investment maximization

    Get PDF
    Producción CientíficaIn this article, we study an inventory system for items that have a power demand pattern and where shortages are allowed. We suppose that only a fixed proportion of demand during the stock-out period is backordered. The decision variables are the inventory cycle and the ratio between the initial stock and the total quantity demanded throughout the inventory cycle. The objective is to maximize the Return on Inventory Investment (ROII) defined as the ratio of the profit per unit time over the average inventory cost. After analyzing the objective function, the optimal global solutions for all the possible cases of the inventory problem are determined. These optimal policies that maximize the ROII are, in general, different from those that minimize the total inventory cost per unit time. Finally, a numerical sensitivity analysis of the optimal inventory policy with respect to the system input parameters and some useful managerial insights derived from the results are presented.Ministerio de Ciencia, Innovación y Universidades - Fondo Europeo de Desarrollo Regional (project MTM2017-84150-P

    Optimal policy for multi-item systems with stochastic demands, backlogged shortages and limited storage capacity

    Get PDF
    Producción CientíficaIn this paper, an inventory model for multiple products with stochastic demands is developed. The scheduling period or inventory cycle is known and prescribed. Demands are independent random variables and they follow power patterns throughout the inventory cycle. For each product, an aggregate cycle demand is realized first and then the demand is released to the inventory system gradually according to power patterns within a cycle. These demand patterns express different ways of drawing units from inventory and can be a good approach to modelling customer demands in inventory systems. Shortages are allowed and they are fully backlogged. It is assumed that the warehouse where the items are stored has a limited capacity. For this inventory system, we determine the inventory policy that maximizes the expected profit per unit time. An efficient algorithmic approach is proposed to calculate the optimal inventory levels at the beginning of the inventory cycle and to obtain the maximum expected profit per unit time. This inventory model is applicable to on-line sales of a wide variety of products. In this type of sales, customers do not receive the products at the time of purchase, but sellers deliver goods a few days later. Also, this model can be used to represent inventories of products for in-shop sales when the withdrawal of items from the inventory is not at the purchasing time, but occurs in a period after the sale of the products. This inventory model extends various inventory systems studied by other authors. Numerical examples are introduced to illustrate the theoretical results presented in this work.Ministerio de Ciencia, Innovación y Universidades - Fondo Europeo de Desarrollo Regional (project MTM2017-84150-P

    Profitability index maximization in an inventory model with a price- and stock-dependent demand rate in a power-form

    Get PDF
    Producción CientíficaThis paper presents the optimal policy for an inventory model where the demand rate potentially depends on both selling price and stock level. The goal is the maximization of the profitability index, defined as the ratio income/expense. A numerical algorithm is proposed to calculate the optimal selling price. The optimal values for the depletion time, the cycle time, the maximum profitability index, and the lot size are evaluated from the selling price. The solution shows that the inventory must be replenished when the stock is depleted, i.e., the depletion time is always equal to the cycle time. The optimal policy is obtained with a suitable balance between ordering cost and holding cost. A condition that ensures the profitability of the financial investment in the inventory is established from the initial parameters. Profitability thresholds for several parameters, including the scale and the non-centrality parameters, keeping all the others fixed, are evaluated. The model with an isoelastic price-dependent demand is solved as a particular case. In this last model, all the optimal values are given in a closed form, and a sensitivity analysis is performed for several parameters, including the scale parameter. The results are illustrated with numerical examples.Ministerio de Ciencia, Innovación y Universidades y Fondo Europeo de Desarrollo Regional (FEDER) - (project MTM2017-84150-P

    Juridicum Generale Assertum : cuius erit litera Imperialium Institutionum in II. Lib. comprehensa, et ab Arnoldo Vinio commentata ...

    Get PDF
    Cartel anunciador de la disertaciónCopia digital. Madrid : Ministerio de Educación, Cultura y Deporte. Subdirección General de Coordinación Bibliotecaria, 2016Precede al tít.: "Nulli plus quam Tibi, absque labe concepta ... gratusque revertitur"Autor precediendo al tít.Fecha en tít. : 1780Texto enmarcado en grab. calc.Grab. calc. de águila bicéfala:"D. Joachimus Rodriguez de Munera, Inventor. Alagarda d. et sculp. Oriolae. P.C. Tip.

    Effectiveness and Safety of the Sequential Use of a Second and Third Anti-TNF Agent in Patients With Inflammatory Bowel Disease: Results From the Eneida Registry

    Get PDF
    Background: The effectiveness of the switch to another anti-tumor necrosis factor (anti-TNF) agent is not known. The aim of this study was to analyze the effectiveness and safety of treatment with a second and third anti-TNF drug after intolerance to or failure of a previous anti-TNF agent in inflammatory bowel disease (IBD) patients. Methods: We included patients diagnosed with IBD from the ENEIDA registry who received another anti-TNF after intolerance to or failure of a prior anti-TNF agent. Results: A total of 1122 patients were included. In the short term, remission was achieved in 55% of the patients with the second anti-TNF. The incidence of loss of response was 19% per patient-year with the second anti-TNF. Combination therapy (hazard ratio [HR], 2.4; 95% confidence interval [CI], 1.8-3; P < 0.0001) and ulcerative colitis vs Crohn's disease (HR, 1.6; 95% CI, 1.1-2.1; P = 0.005) were associated with a higher probability of loss of response. Fifteen percent of the patients had adverse events, and 10% had to discontinue the second anti-TNF. Of the 71 patients who received a third anti-TNF, 55% achieved remission. The incidence of loss of response was 22% per patient-year with a third anti-TNF. Adverse events occurred in 7 patients (11%), but only 1 stopped the drug. Conclusions: Approximately half of the patients who received a second anti-TNF achieved remission; nevertheless, a significant proportion of them subsequently lost response. Combination therapy and type of IBD were associated with loss of response. Remission was achieved in almost 50% of patients who received a third anti-TNF; nevertheless, a significant proportion of them subsequently lost response

    Correction : Chaparro et al. Incidence, Clinical Characteristics and Management of Inflammatory Bowel Disease in Spain: Large-Scale Epidemiological Study. J. Clin. Med. 2021, 10, 2885

    Get PDF
    The authors wish to make the following corrections to this paper [...]
    corecore